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Abstract Heme oxygenase (HO)
breaks down heme, the iron-
containing, oxygen-carrying con-
stituent of red blood cells, yielding
biliverdin, iron (II) ions, and car-
bon monoxide (CO). Among the
isoenzymes cloned to date, only
HO-1 can be induced by a panoply
of stimuli linked by their ability
to provoke oxidative stress. HO-1
induction protects against cell death
in experimental models associated
with ischemia/reperfusion or inflam-
mation, making the gene a promising
target for critical care medicine.
Induction of HO-1 may confer
protection by controlling intracel-
lular levels of toxic heme, or by
anti-inflammatory, anti-apoptotic,
and blood flow-maintaining effects
of its by-products biliverdin and
CO. Although protective effects of

upregulation of HO-1 have been
reported for a variety of cells and
tissues, evidence suggests that the
protective action may be restricted
to a rather narrow threshold of
overexpression. In addition, there is
substantial variation in gene expres-
sion depending on transcriptional
control mechanisms such as a mi-
crosatellite length polymorphism.
Genetic variability and the required
use of cytotoxic inducers are hurdles
for purposeful targeting of HO-1
gene expression in critical care,
while administration of by-products
of the pathway seems feasible at
present.

Heme and heme oxygenase isozymes

Heme is a ubiquitous molecule with an active iron center
carrying a high affinity for oxygen. The high affinity to
oxygen allows for reversible binding and transport of
oxygen in hemoglobin and myoglobin. Furthermore, by
virtue of its cardinal function as an electron donator in
oxidation/reduction cycles, the heme prosthetic moiety
is of outstanding significance for electron transfer: heme
groups serve as the catalytic site and act tightly bound
to a variety of proteins involved in aerobic metabolism,
including respiratory chain cytochromes and numerous
cytochrome P450 isoenzymes [1]. “Free” cellular heme
may derive from these ubiquitous heme proteins and may
act as a pro-oxidant [2, 3]. Thus, free heme is poten-

tially toxic and intracellular levels are vanishingly small
and tightly controlled in most cells and tissues. While
regulation of heme biosynthesis is accomplished through
the modulation of δ-aminolevulinic acid synthase (ALA
synthase; EC 2.3.1.37) activity [4], the enzymatic degrada-
tion of heme is controlled by microsomal heme oxygenase
(HO; EC 1.14.99.3) isoenzymes which catalyze the
initial and rate limiting step in heme catabolism [5].
Oxidative cleavage of the α-mesocarbon bridge of b-type
heme molecules by HO yields equimolar quantities of
biliverdin-IXα and carbon monoxide (CO), while divalent
iron is released. Activities of ALA synthase and HO are
both regulated by the cellular heme content [6].

Biliverdin-IXα is subject to further degradation to
bilirubin which occurs through the action of the cytosolic
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enzyme biliverdin reductase (bilirubin:NAD(P)+oxido-
reductase; EC 1.3.1.24) [7]. The cellular fate of CO
formed during heme degradation is only incompletely
understood. CO may bind to oxyhemoglobin as well
as to other heme-containing proteins, thereby affecting
their heme prosthetic moieties and activity, as has been
previously reported for nitric oxide (NO) [8, 9]. Thus,
CO may activate soluble guanylate cyclase, leading to
vasodilation. However, the much less pronounced effect of
CO in stimulating GC compared to NO, and the presence
of a dilatory effect despite administration of blockers of
the cGMP pathway, suggest cellular mechanisms others
than activation of sGC [10, 11]. In particular, there is
evidence for a CO-induced dilation by BKCa channel
activation, as blockade of BKCa inhibits CO-mediated va-
sodilation [12] and HO inhibitors derogate BKCa channel
activity in smooth muscle cells [13]. It is important to
note that modification of an externally located histidine
residue with diethyl pyrocarbonate abrogates channel
activation, suggesting an essential role of this amino
acid [14]. Furthermore, the α-subunit of the channel is
critically involved in its activation process. This subunit
contains a heme-binding pocket, and binding of heme
to the channel inhibits its activity [15]. By binding to
protein-bound ferrous heme as a receptor, CO activates
the channel by altering the interaction of heme with the
intrinsic active protein, resulting in an increase in Ca2+

sensitivity [16, 17]. Under physiological conditions, in
smooth muscle cells, channel activity is regulated by
a local and transient increase of Ca2+ concentration in
the micromolar range, resulting in membrane hyper-
polarization via K+ currents and subsequent reduced
voltage-dependent Ca2+ channel activity [18]. In this
context, endogenously generated or exogenously added
CO elevate the amplitude and frequency of the channel
dependent on varying Ca2+ concentrations, which may
be an essential mechanism for CO-mediated vasodilatory
actions [19]. Thus, the mode of action as well as the fate
of endogenous CO is still a matter of debate. Ultimately,
CO is exhaled by the lungs, and gas-chromatographic
quantitation of exhaled CO can serve to assess HO activity
in vivo [20].

The enzyme systems regulating heme synthesis and
degradation are not evenly distributed among organs and
tissues, and HO activity is particularly high in spleen,
testes, brain, and liver [21]. At present, cDNA of three
isoenzymes, i.e. HO-1, -2, and -31, have been cloned and
described to date [22–25]. While HO-1 and -2 have been
extensively characterized for several species, cDNA of
HO-3 has been cloned in rat only. It was suggested that
HO-3 exhibits a substantially lower catalytic activity than

1The HGNC approved gene symbols for the two isoenzymes are HMOX1
(alias HO-1 and bK286B10) and HMOX2 (alias HO-2) respectively, thus we
use HO-1 and HO-2 for convenience throughout the manuscript.

the isoenzyme 1 and 2 and plays a role in binding or
transporting heme within the cell rather than degrading
heme [23]. However, a recent study has questioned the
existence of HO-3: The lack of HO-3 transcription from
two presumed genomic loci indicates that the HO-3
gene might reflect a processed pseudo-gene of the HO-2
locus [26]. Although HO-1 and HO-2 catalyze the same
reaction and have similar cofactor requirements (NADPH,
O2), they substantially differ with respect to regulation
and expression pattern. The isoenzymes are encoded by
distinct genes located on chromosomes 22q12 (HO-1) and
16q13.3 (HO-2) in the human genome [27, 28]. HO-1
and -2 proteins differ in molecular weight and are im-
munologically distinct [29]. HO-2 – also referred to as the
“constitutive” isoenzyme – does not seem to be inducible
by either inflammatory or oxidative stress [30], although
the promoter of the HO-2 gene contains a glucocorticoid
response element [31]. In any case, substantial increases in
HO activity as observed in models pertinent to critical care
are mediated by an increase in gene transcription rates
for HO-1 [30, 32]. HO-1 has been identified as the major
32-kDa heat shock (stress) protein hsp32 in the rat [33]
while thermal stress did not increase HO-1 in cultured
human liver cells [34]. This and other substantial differ-
ences regarding regulation of the human and rodent gene
and their implications for critical care will be discussed in
detail later.

HO-1 gene expression under stress conditions:
heme-dependent and independent pathways

Formation of reactive oxygen intermediates is a hallmark
of ischemia/reperfusion injury, and inflammatory condi-
tions substantially contribute to organ failure in the criti-
cally ill. HO-1 is highly inducible under these conditions
and reflects one of the most prominent lines of defense of
the cell against oxidative stress (Fig. 1). Moreover, delib-
erate induction of the gene prior to the stress event seems
to be a promising stratagem to increase tolerance under
conditions with anticipated formation of reactive oxygen
species, e.g. in organ transplantation [35]. Similarly induc-
tion of the gene upon an insult confers protection in a va-
riety of injury models pertinent to critical care medicine,
as described in detail below. Thus, in-depth understanding
of regulation of the HO-1 gene is of outstanding impor-
tance if this pathway is to be utilized deliberately in criti-
cal care medicine. Unfortunately, there are substantial dif-
ferences with respect to regulation of the gene in rodents
and man, so that caution should be exercised in extrapo-
lating promissory results from rodent models to the crit-
ical care setting [36]. Nevertheless, genetic variability in
the human HO-1 gene exists and geno- or haplotypes with
higher transcription rates seem to favorably affect outcome
(see below; for review [35, 37]). The HO-1 gene – and
thus presumably CO – is induced in critically ill patients in
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Fig. 1 Mutual interaction of the
heme oxygenase pathway and
the cellular response to oxi-
dative stress (ROS, reactive
oxygen species)

a broad range of conditions, as mentioned above, although
the molecular mode of action will differ between inhaled
and endogenously formed CO [36].

The different inducers of HO-1 act either via a met-
alloporphyrin-dependent (heme, the heme precursor ALA,
phenobarbital, or other metalloporphyrins) or a metallo-
porphyrin/heme-independent (e.g. transition metals, heat
shock, oxygen radicals) mechanism. Despite the differ-
ences, the effects of the diverse factors on hepatic HO-1
gene expression appear to be mainly controlled at the tran-
scriptional level [30, 32], and induction via classical stress

pathways involves mitogen-activated protein kinases. The
broad spectrum of inducing agents essentially reflects the
presence of a variety of transcriptional enhancer elements
including binding sites for activator protein-1 (AP-1) and
nuclear factor κB (NFκB) as well as hypoxia response,
cadmium response, heat shock response, metal response,
and IL-6 response elements within the HO-1 promoter
(Fig. 2) [6]. Nevertheless, there is recent evidence to sug-
gest that de-repression of the BACH-1 repressor (a bZip
protein that forms heterodimers with small Maf proteins)
is functionally significant to enhance HO-1 transcription
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Fig. 2 Model of the human HO-1 gene and potential regulatory ele-
ments (AB1, distal enhancer element AB1; SX2, distal enhancer el-
ement SX2; CRE, cAMP responsive element; Nrf2, nuclear factor
erythroid 2-related transcription factor 2; AP-1, activator protein-1)

in human cell lines: small interfering (si)RNAs targeted
to BACH-1 mRNA by itself induce upregulation of HO-1
and further enhance dose-dependent upregulation by
the prototypic inducer heme [38]. It is noteworthy that
a wide variety of drugs used in the ICU setting, such
as steroids [39], statins [40], and β1-agonists [41], can
interfere with regulation of HO-1 and this might contribute
to the salutary actions of these compounds [42].

Biological functions of by-products of HO-1:
“The good, the bad, and the ugly”

Due to the potential toxic effects of free heme, a metic-
ulous balance between its synthesis and catabolism
is crucial to ensure cellular homeostasis. Thus, heme
oxygenase has classically been viewed exclusively as
a heme-degrading enzyme system, and heme itself has
long been recognized as a potent inducer of HO-1 [43].
On the other hand, two products of this pathway, i.e.
biliverdin and CO, received little attention until the finding
that they exert biological functions under physiological
conditions [44, 45]. These functions are even more
pertinent after induction of HO-1, e.g. after resuscitation
from shock [46]. The observation that almost all of the
stimuli for HO-1 induction including the substrate heme
are linked by their ability to provoke oxidative stress,
in concert with the observation that bile pigments can
function as endogenous antioxidants, has supported a role
for HO-1 and its products biliverdin/bilirubin in the adap-
tive response to oxidative stress [47]. Among the stimuli
pertinent to critical care medicine, (low-flow) ischemia
and reperfusion secondary to shock and resuscitation is
a particularly frequent clinical problem. Previous work
from our laboratory regarding the role of HO1/hsp32 in
the hepatic stress response in experimental models of
hemorrhagic shock and subsequent resuscitation indicated
that induction of HO-1 reflects an adaptive response to
reactive oxygen species (ROS) formation [48, 49], and
confers delayed protection against tissue injury [50, 51].

Although the protective actions of CO and the bile
pigments in vitro and in vivo during heme degradation
are meanwhile well documented (see review by Scott

et al. in this issue; [44, 52–54]), it is obvious that the
long-known potential toxic effects of iron, CO, and the
bile pigments [55, 56] are likely to limit the beneficial
actions to a rather narrow threshold of overexpression.
Iron is released in equimolar amounts when heme is de-
graded to yield biliverdin and carbon monoxide. Since iron
catalyzes the formation of reactive oxygen intermediates,
most notably the hydroxyl radical, it is obvious that this
by-product may offset the anti-oxidative properties of the
bile pigments if it is formed in significant amounts. Thus,
HO-1 expression as part of the cellular stress response may
exhibit pro- and antioxidant properties [4]. Ferrous iron is
rather effective as a strong oxidant; however, it stimulates
the synthesis of ferritin through its regulatory protein
binding and activation of iron response elements [57].
Ferritin is an intracellular iron-storage protein ensuring
safe sequestration of free iron ions, thereby serving as an
additional antioxidant [58]. However, the mechanisms that
are involved in co-expression of HO and ferritin genes
may involve additional pathways. For instance, in HO-2
knock-out mice ROS may initiate transcriptional activation
of the HO-1 gene, but these animals fail to induce ferritin
transcripts simultaneously [59]. Furthermore, there is evi-
dence to suggest that iron ions can synergize with ROS to
regulate the expression of oxidative stress response genes,
including HO-1 itself [60]. In any case, HO-1 seems to
be of outstanding importance for iron reutilization in
rodents [61] and humans [62] even under physiologic con-
ditions, and HO-1 deficiency has been shown to result in
iron deposition with inflammatory sequelae secondary to
impaired reutilization. While HO-1-targeted mice exhibit
a phenotype characterized by iron metabolic disorders
with long survival, the first human autopsy case of HO-1
deficiency in a 6-year-old boy revealed predominant
intravascular hemolysis, coagulation, and amyloidosis
with substantially reduced life expectancy [63]. Whether
increased release/deposition of free iron ions due to acute
overexpression and increased HO activity may result from
induction of the HO-1 gene in vivo (as has been suggested
in cultured cells [55]) has not been studied specifically.

Carbon monoxide has received much attention as
a messenger molecule and as a potential therapeutic tar-
get [13]. HO as a potential endogenous source of CO
co-localizes with soluble guanylate cyclase – as a potential
target of CO actions – primarily in neuronal tissues, and
inhibition of HO by false substrates or gene knock-out may
adversely affect functions of the central and peripheral
nervous system [65–68].

Although CO and NO display some similarities, there
are substantial differences between these two gaseous
monoxides with respect to their mode of action. NO
synthesis by the constitutive NOS isoforms is tightly
regulated by physiological stimuli (coupled to Ca2+ re-
lease), and its half-life is highly limited due to an unpaired
electron leading to rapid reactions with metal ions, ROS,
or sulfhydryl groups in the cell. Thus, stimulation of the
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constitutively expressed NOS isoenzymes (NOS1, NOS3)
leads to a short-lived burst of NO production, which in turn
results in a rapid and transient rise in local cGMP levels
reflecting an approximately 100- to 400-fold activation of
soluble guanylate cyclase (sGC). The substantial increase
in sGC activity is due to binding of NO to the prosthetic
heme moiety of sGC, leading to breaking of the proximal
His–Fe bond and formation of a 5-coordinated nitrosyl
heme complex [68, 69].

In contrast, CO is not a radical and its production
by HO-1 is not tightly regulated in an “on-off” manner.
Furthermore, binding of CO to the prosthetic heme group
of sGC – at least under in vitro conditions – leads to
formation of a 6-coordinated heme complex interacting
with His–Fe bonds with only a fivefold increase in
activity of the α1β1 heterodimeric isoform of sGC [70].
However, mechanisms such as ‘sensitization’ of sGC
to CO in biological systems [71] as well as control of
NO production by HO [72] may result in a substantial
increase in the impact of the HO pathway in the control
of cGMP levels. Heme prosthetic moieties are abundantly
present in enzymes catalyzing single electron-transferring
reactions. Thus, CO might interfere with the activity
of a variety of enzymes others than sGC. Evidence in
this respect has been provided for a panel of enzymes
including xanthine oxidase [73], NADPH oxidase [74, 75],
and prostaglandin-H-synthase [76], underlining the signif-
icance of the HO system for modulation of the oxidative
stress response.

Similar to the NOS system, which comprises con-
stitutive and inducible isoforms, the HO system is
characterized by constitutive and stress-inducible isoen-
zymes. The stress-induced production of NO by the
inducible NOS isoform (NOS2) is independent of Ca2+/
calmodulin, which control NO production by the consti-
tutive NOS isoforms. Thus, substantially higher amounts
of NO are produced in a tonic fashion. Work from our
laboratory suggests that similarities exist between the
stress-inducible NOS/NO and the HO-1/CO pathway, at
least for the portal circulation of the liver under conditions
of septic and hemorrhagic shock [46, 51]. Blockade of HO
activity with false substrates of the HO pathway produced
a moderate, selective, and transient increase in portal
vascular resistance but no decrease in portal blood flow
in the normal rat liver. In contrast, a substantial, selective,
and lasting increase in portal resistance was observed upon
administration of Sn-protoprophyrin-IX, a false substrate
leading to a long-lasting blockade of HO activity, after
transcriptional activation of the HO-1 gene by hemorrhage
and resuscitation [46]. This augmented pressor response
of false substrates of HO in the liver is paralleled by
a decrease in portal blood flow and reflects unmask-
ing of a parallel induction of vasoconstrictors, such as
endothelin-1 [77]. Due to similarities between the gaseous
monoxides CO and NO, sGC has been traditionally
considered as the target of cellular actions of CO, although

alternative modes of action of CO have been suggested. In
addition, CO might regulate expression of NOS2 in lung
and liver, which is another important aspect regarding
critical care in general and specifically sepsis [78]. These
cGMP-independent effects may include activation of vas-
cular 238pS KCa [79] and 105pS KCa channels, rendering
smooth muscle cells less responsive to the actions of vaso-
constrictors [80]. The protective effect of HO-1 overex-
pression, e.g. in the lung, has been ascribed to CO-induced
elevation of cGMP and/or activation of p38 MAPK [81].
Recently, it was shown that the expression and activity of
the matrix metalloproteinases MMP-1 and MMP-2, which
are regulated in a MAPK-dependent manner, are inhibited
in the human lung epithelial cell line A549, implicating
a crucial role of CO in the pathophysiology of emphysema
and other diseases involving a protease/antiprotease imbal-
ance [82]. In addition, CO at physiological concentrations
inhibits the production of proinflammatory cytokines
such as TNF-α, MIF, and IL-1 from macrophages and
the secretion of interleukin-2 from activated T-cells via
selective activation of the MAPK pathway [83, 84].

Induction of HO-1 – a double-edged sword

Studies using HO-1 knock-out mice, as well as the report
of the first human case of HO-1 deficiency [63], suggest an
important role for the inducible HO isoenzyme already un-
der physiological conditions. Mice lacking HO-1 were un-
able to modulate body iron stores properly and were more
susceptible to tissue injury [61, 85]. In addition, stress
conditioning including HO-1 gene expression as well as
HO-1 gene transfer can render cells, tissues, and organisms
less susceptible to subsequent stress [86, 87]. Although
the bulk of literature available to date would suggest that
HO-1 gene expression confers protection in a variety of
injury models pertinent to critical care medicine [88–91],
there is evidence to suggest that the protective properties
of this pathway are restricted to a rather narrow threshold
of overexpression [55]. Thus, evidence available to date
would suggest that HO-1 is neither exclusively cyto-
protective nor exclusively cytotoxic. While most of the
animal data were obtained after stress conditioning using
cytotoxic inducers, e.g. heavy metal ions, this is not an
intriguing option in the critical care setting. Nevertheless,
these studies were conducted almost exclusively in rodent
species and, thus, a fairly homogeneous induction of the
gene in these animals can be assumed.

Differences between rodent and human HO-1 genes
– a plea for caution

Data from a flurry of studies mostly conducted in rodents
provided evidence that antioxidant properties (presum-
ably via biliverdin formation) and improved blood flow
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(presumably via CO formation) contribute to the salutary
effects of HO-1 gene expression under conditions of
shock and inflammation [46, 51, 92]. Thus, CO may
confer additional protective effects via anti-inflammatory
mechanisms [87, 93] particularly in models pertinent to
surgical conditions, such as transplantation or infection.

In this light, alternative regulatory features of the
human as compared to the mouse/rat gene give rise
presumably to substantial variability in HO-1 expression
in humans, with potential implications for critical care
medicine. One striking difference in the genomic orga-
nization of the genes in the species is the presence of
a (GT)n repeat microsatellite in the human HO-1 gene.
Several lines of evidence point to a regulatory function
of this motif. (1) Systematic analysis shows that rat and
mouse genes completely lack the microsatellite (the same
is true for the dog genome, while in the chimpanzee draft
genomic sequence only a low-number repeat is present).
(2) The non-inducible HO-2 gene is not associated with
such a (GT)n microsatellite [94]. (3) The length of this
polymorphic repeat has been associated with a different
outcome in a variety of diseased states. Interestingly, this
has also been demonstrated for NOS1, where a similar
genomic element at a similar position around the first exon
is found and the repeat length influences the decline in
lung function in patients with cystic fibrosis [95].

Whether this repeat influences gene transcription, for
instance by spacing apart interacting binding sites for tran-
scription factors, or may influence translation of the pro-
tein by forming a (GU)n stem–loop structure in the 5′-UTR
of the mRNA has to be elucidated. There is at least ev-
idence by two spliced ESTs (expressed sequence tags,

BE407102, DA903962) from the EST database that
this repeat region can be part of the HO-1 transcript. If
transcribed, such a structure may hinder the ribosome
scanning and therefore efficient translation. A similar
translational control mechanism has been described for
glutamate receptor 2 [96].

In line with this concept, genotypes associated with
higher transcriptional activity, such as a short GT repeat in
the well-characterized microsatellite length polymorphism
between –198 and –256, are associated with a better
outcome in a variety of diseases pertinent to intensive
care [97–102]. These include conditions associated
with ischemia and reperfusion as well as inflammatory
conditions, such as kidney transplantation and myocar-
dial infarction but also lung emphysema. On the other
hand, these differences would imply that strategies to
induce the gene in humans deliberately, e.g. prior to
ischemia/reperfusion associated with transplantation, will
vary greatly with respect to the genetic background of the
patient. Thus, assessment of the genotype prior to such
interventions seems mandatory. Strategies to apply the by-
products of the pathway, such as biliverdin or CO, directly
to the patient seem more promising. It is noteworthy that
– unlike data obtained in experimental models – the HO-1
gene is induced in brain-dead organ donors as a result
of the underlying trauma/injury [35, 37]. Thus deliberate
induction of the gene prior to organ harvest is less likely to
lead to substantial increases in activity. In any case, if the
promising data from preclinical studies in rodents prove
to be applicable to man, this pathway bears outstanding
potential for medicine in general and in particular for the
care of the critically ill.
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