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ABSTRACT

Centromeres play a pivotal role in the life of a
eukaryote cell, perform an essential and conserved
function, but this has not led to a standard centro-
mere structure. It remains currently unclear, how
the centromeric function is achieved by widely dif-
fering structures. Since centromeres are often large
and consist mainly of repetitive sequences they
have only been analyzed in great detail in a handful
of organisms. The genome of Dictyostelium discoi-
deum, a valuable model organism, was described
a few years ago but its centromere organization
remained largely unclear. Using available sequence
information we reconstructed the putative centro-
mere organization in three of the six chromosomes
of D. discoideum. They mainly consist of one type
of transposons that is confined to centromeric
regions. Centromeres are dynamic due to transpo-
son integration, but an optimal centromere size
seems to exist in D. discoideum. One centromere
probably has expanded recently, whereas another
underwent major rearrangements.
In addition to insights into the centromere organiza-
tion and dynamics of a protist eukaryote, this work
also provides a starting point for the analysis of the
evolution of centromere structures in social amoe-
bas by comparative genomics.

INTRODUCTION

Genomes of all organisms consist of chromosomes that
are duplicated and split between daughter cells. Bacterial
genomes are relatively simple structures containing one, at
most two chromosomes and a number of plasmids. In
most cases these genomic elements are circular with one
origin of replication but linear chromosomes also exist (1).
In contrast, eukaryote genomes are more structured and
diverse: they consist of a variable number of chromosomes
ranging from approximately 100 kb to many Mb. They are

always linear and therefore must contain essential
elements to enable maintenance and proper propagation
to the progeny. The chromosome ends must be capped
by telomeres, which protect the core chromosome from
degradation and are responsible for the length mainte-
nance during each replication cycle (2). Centromeres are
required as attachment points for the spindle apparatus
to attach during cell division so that the chromosomes can
be exactly divided up between daughter cells.
Surprisingly, neither centromeres nor telomeres have

a common organizational principal in all eukaryotes.
Though most eukaryotic telomeres make use of short
sequences (TTAGGG and variations thereof), which are
synthesized at the ends of the chromosomes by a telome-
rase to form chromosome ends, others do not. In some
insect groups, e.g. Drosophila, special transposon species
are dedicated to form the chromosome ends and ensure
sequential elongation of the chromosomes by transposi-
tion. Therefore, a commonly used principle for chromo-
some end maintenance is not essential, only the sequential
elongation of telomeres is critical.
Centromeres seem to be even more variable than telo-

meres. Saccharomyces cerevisiae chromosomes contain a
well-defined sequence motif of 125 bases, which is the only
requirement for proper centromere function in this species
(3). However, in most organisms centromeres are not
defined by a certain sequence motif. For example,
human centromeres are comprised of so-called alpha satel-
lites, where no specific motif mediates the function of a
centromere but rather a certain repetitiveness and size is
required (4). In extreme cases like Caenorhabditis elegans,
the centromere function cannot be assigned to a certain
region of the chromosome, so no centromeres exist and
chromosomes are holocentric in this organism (5). Other
organisms like maize have centromeres containing trans-
posons (6).
Dictyostelium discoideum belongs to the group of social

amoebas in the evolutionary branch of Amoebozoa (7).
It is a long-standing valuable model organism to study
cell signaling, cytoskeleton and development, however
its centromere structure is not well understood (8). Its
genome is relatively small with 34 Mb (9) but contains
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a considerable fraction of repetitive elements including
usual and unusual LTR and nonLTR transposons,
DNA transposons, and not classified repetitive elements
(10). Some of these transposon classes have a remarkable
insertion preference: while tRNA gene-targeted retroele-
ment (TRE) target exclusively the 30- or 50-end of tRNA
genes, the Dictyostelium Intermediate Repeat Sequence
(DIRS) elements are found preferentially to be integrated
in another DIRS element although no specific target
sequence could be defined so far making this insertion
preference to an unresolved question.
The genome is divided into six chromosomes, all of

which harbor large repetitive regions at one tip. DIRS
LTR transposons (11) are restricted almost exclusively
to these regions. The only DIRS element not located in
such a region is associated with a large duplication in
chromosome 2 and thought to be the remainder of an
unsuccessful attempt to establish a new centromere (9).
The only experimental evidence that these regions perform
centromeric functions is derived from the observation
that these chromosome ends cluster in interphase and
metaphase cells. Further striking evidence is that the
DIRS repeat regions are the only obvious common fea-
ture of all chromosomes and are confined to one chro-
mosomal area each. Furthermore, as in other organisms
(12) these regions produce small RNAs, which might be
involved in the regulation of centromere functions (13). In
the following we will refer to these regions as centromere
regions, albeit their function is not yet proven. Before
this study our knowledge of the centromere structure in
D. discoideum was scarce. Reconstruction of the centro-
mere region from chromosome 1 was possible by using
reads from the chromosome 1 enriched library together
with the read pair information and unique sites in and
at the borders of the repetitive units (9). This analysis
showed that most but not all sections of this region are
composed of transposons, mainly of the DIRS type. With
only information on one such region it is impossible to
generate broad conclusions about centromere structure
and evolution in this organism. To enable a comparative
analysis of centromeric regions of D. discoideum and
infer possible modes of their generation, we reconstructed
more centromeric regions using the same technique as
with that of chromosome 1.

MATERIALS AND METHODS

Whole chromosome assemblies were obtained from dicty-
base (http://dictybase.org) (14). A BLAST database was
created containing all reads from the genome shotgun
sequencing project. All raw sequencing reads were blasted
against these sequences using stringent BLAST param-
eters (95% identity over 100 bases). Using BLAST
again, the remaining reads were checked for the presence
of previously defined repetitive elements (10). The naming
convention implemented in the genome project enabled
the construction of chromosome-specific bins. As a
result, the reads containing tentatively unambigous
sequences were then assembled separately for each chro-
mosome using the GAP assembler (http://staden.source

forge.net/). With this method, we obtained unique
sequence contigs not present in the current D. discoideum
assembly. These ‘seed’ contigs were then used for a step-
wise completion of the assembly. Several rounds of the
following assembly steps were performed until no further
sequences could be added: (i) incorporating the corre-
sponding reads from the other end of the clone (read
pair) enabled extension of the contigs. Contigs indicated
by read pair information to be adjacent were joined; (ii)
the resulting contigs were manually checked and wrongly
incorporated reads were removed; (iii) polymorphisms,
indels, truncation regions and unique sequences were
then characterized; and (iv) used to find similar reads in
the raw sequencing read database via BLAST (15).

Since in the final assembly, reads were derived from
different chromosome-enriched libraries the individual
contigs were assigned to specific chromosomes using a
method described earlier (16). Sequencing gaps were
filled by primer walking on the connecting clones. The
sequence coverage of the individual centromere regions
was comparable with their respective chromosomes.
Only a few gaps that could not be closed, at most four,
remained in the individual centromere regions. No read
pair support exists for these gaps and a PCR approach in
repetitive regions to obtain missing sequences is not fea-
sible. These gaps could be spanned using the consensus
sequence of transposons, which matched two contig
ends, so the contigs were ordered according to these over-
laps yielding the most probable centromere consensus.
However, we cannot totally exclude that additional
sequences reside in the gaps or the real order of the contigs
in the centromeres is different from that presented here.

Identification of repetitive elements

The known transposon sequences were put in a BLAST
database. Further putative repeated sequences were found
during the assembly process of the centromeric regions.
These sequences were added to the database of trans-
posons to yield a comprehensive sequence repository for
repetitive elements (Supplementary Material). A Blast
analysis of the assembled centromeric contigs using this
database was performed to identify all repetitive regions.
Furthermore, tRNAscan (17) was used to search for
tRNA genes. Repeat positions were transformed to a gff
file format for each centromere. A graphical representa-
tion of the centromeres was obtained using gff2ps (18) on
these gff-files.

Phylogenetic tree reconstruction

From the BLAST analysis, we identified 34 full-length or
nearly full-length DIRS elements on all centromeres.
These elements were aligned using clustalX (19). The
resulting alignment was manually corrected. For tree
reconstruction we used puzzle (20) and distance and
maximum likelihood methods implemented in PHYLIP
(21). Molecular clock and relative rate analyses were
performed with HYPHY (22). Both analyses used the
general reversible model and the DIRS element C2o 14
was used as the outgroup for the relative rate test.
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RESULTS AND DISCUSSION

Centromere assembly

From a previous study (10), it was known that the
D. discoideum genome harbors up to 10% transposon-
derived sequences. The unique portion of the genome
including shorter repetitive parts and a manually recon-
structed centromere region from chromosome 1 was pub-
lished in 2005 (9). In this assembly most raw sequencing
reads were incorporated, but not all repetitive regions
could be resolved. Automated assemblers tend to assign
ambiguous positions in the genome to reads from repeti-
tive regions if polymorphisms are scarce or exclude them
totally from the final assembly. Thus, a considerable
number of reads (>5% of all reads) remained unassem-
bled due to repetitiveness or bad quality. The assembly of
repetitive regions larger than 5 kb was especially ham-
pered. This limitation by size is caused mainly by the
fact that with current technology cloning of extremely
AT nucleotide-rich sequences is not possible (23) and
therefore clone resources for the D. discoideum genome
are restricted to short insert libraries. We reasoned that
much of this unassembled remainder should comprise
sequencing reads from centromeric regions.

The genome sequence was built mainly from chromo-
some-enriched libraries. Therefore, it was possible to
assign raw sequencing reads according to a tentative
chromosome location and to whether or not the specific
read occurred in the final assembly. Since the reads not
present in the final assembly contained both the repetitive
elements that are believed to be part of centromere and
unwanted low-quality reads, these reads were assembled
using stringent parameters in a chromosome-specific
manner. This excluded the low-quality reads and ensured
a correct assembly albeit resulting in only small contigs of
up to 2.5 kb. An analysis of these contigs revealed that it
would be impossible to assign contigs correctly to either
chromosome 4 or 5. This is due to the fact that these two
chromosomes have almost the same size and cannot be
properly separated in pulsed field gels. Thus, the chromo-
some-enriched libraries overlapped too much to yield a
stringent sorting parameter. Additionally, sequencing
reads from chromosome 6 are almost completely derived
from only one clone direction meaning that read pair
information is not available for this chromosome. Since
read pair information is indispensable for the assembly
of large repetitive sequences, it was also not possible
to reconstruct the sequence of the centromere from chro-
mosome 6.

The final assembly of the centromeric regions of chro-
mosomes 2 and 3 yielded five contiguous sequences for
each region. These contigs were then oriented towards
each other according to the transposon sequences they
harbored at their ends (see Materials and Methods
section). The centromere of chromosome 3 can be directly
attached to the chromosome 3 unique core regions via
two independent clone bridges. As a result, we estimate
that this region is complete and correctly assembled. In
case of the chromosome 2 centromeric region, two final
contiguous sequences were obtained. Presumably the
shorter one resides at the chromosomal duplication

breakpoint (see below). In the larger sequence (360 kb)
we designed HAPPY Map markers (24) which covered
the entire region. These markers (DH5499, DH3377,
DH3286, DH2916, DH2922 and DH2664) could be
linked to the chromosome 2 core sequence indicating a
correct assembly of the chromosome 2 centromeric region.

Centromere structure

All centromeres together occupy 3.8% of the three chro-
mosomes (Table 1). Each individual functional centro-
meric region is longer than 170 kb. The smallest
assembled region is located in the middle of chromosome
2. Since this region is probably only an artifact of the
duplication event, it probably retained no function
and cannot be counted as a proper centromeric region.
The observed sizes of the true centromeric regions
(171–361 kb) increase with the sizes of the chromosomes,
although not linearly (Table 1). Since this analysis is
restricted to only three chromosomes this observed non-
proportional size increase remains a circumstantial
evidence and might not be important for centromere
function.
All centromeres are highly repetitive with a total of

86% identifiable repetitive elements overall. The majority
of this repetitiveness is achieved by transposons. However,
we detected also small multiplied regions without defined
transposons (Supplementary Material). These small
sequence motifs have no obvious coding capacity and no
significant G/C content difference to their surroundings.
They are found exclusively in centromeric regions and
may represent rare DNA transposable elements or could
be derived from recombination events. Additionally, in the
centromeres of chromosomes 1 and 2, but not 3, there are
two tRNA genes each. Only one of these tRNA genes
seems to be functional, since the other three were marked
as pseudogenes (see Materials and Methods section).
The different transposon species occur at approximately

the same percentage in each centromere (Table 2). DIRS
elements comprise a total of 48.8% of all assembled
centromere structures (Tables 1 and 2). These elements
are restricted to only centromeric regions on the chro-
mosome. The observed percentage of DIRS elements
(1.8% of the total chromosomes) matches relatively
closely the previously estimated percentage (3.2%) for
the whole genome (10). The difference between calculated
and observed values is probably due to the cloning bias
towards A/T poorer sequences, which favors the cloning
of DIRS element-derived sequences. Based on the
observed and estimated numbers for DIRS elements in
chromosomes 1, 2 and 3 and in the whole genome, we
can estimate the total amount of DIRS sequences in chro-
mosomes 4, 5 and 6 to be between 260 kb and 490 kb.
Dictyostelium DNA Transposon (DDT) elements and
the retrotransposon skipper contribute also 20% and
10%, respectively, to the overall length of the centromeres
and therefore are enriched there compared with the rest of
the genome (where they are present at only 1% and 0.9%,
respectively). In contrast, the DNA transposons (Tdd ele-
ments) are only slightly overrepresented in this region,
whereas nonLTR elements (TRE) are almost completely
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missing from centromeric regions. The only TRE element
which is clearly located in a DIRS element containing
region is that of the unfunctional chromosome 2 inner
DIRS region.
Most elements are highly fragmented (Table 2), mainly

due to subsequent insertions of further transposable ele-
ments. DIRS elements andDDT/Tdd elements show a pro-
nounced preference to be located in regions enriched
for the respective elements. For example in the centromere
of chromosome 3 the region from 17 kb to 35 kb is
occupied by DDT and Tdd elements only, whereas the
region from 85 kb to 100 kb is comprised solely of DIRS
elements (Figure 1). Skipper and Dictyostelium Gypsy like
Transposon (DGLT) elements apparently show no such
preference.

rDNAPalindrome sequences as caps at centromeric ends

In the previous analysis of the whole D. discoideum
genome, it was postulated that all chromosomes are
capped at both ends with sequences derived from the
rDNA palindrome (9). This kind of protection from
slow chromosomal decay is thus different from that of
most other eukaryotes. The previous finding was based
on the observation that for each chromosome two junc-
tions between palindrome and either transposons or
unique chromosome sequence could be found. In each
case, the palindrome and genome sequence were ordered
in the following order: chromosome, junction, palin-
drome, palindrome end (Figure 2A). However, the posi-
tion of these junctions on the chromosomes was only
tentatively assigned. Chromosome ends adjacent to the
centromere were especially difficult to analyze at that
point, since only centromere sequences from chromosome
1 were available. We now can confirm that all centromeres

analyzed are bordered by rDNA sequences at one side
in the same order as was proposed (Figure 1). This fact
proves that all chromosomes are indeed telocentric having
only a q arm as previously suggested (25).

Scars from healing chromosome wounds

Chromosome breaks and rearrangements can also occur
in centromeric regions. In the centromeres of chromo-
somes 2 and 3 we found potential marks of such events
(Figure 2B).

Chromosome 3 centromeric fusion or extension mark:
within the chromosome 3 centromere at 122 kb from
the very end of the chromosome, we identified a
short sequence derived from the rDNA palindrome.
This sequence is currently the only case in the whole
genome where we found a junction between the 30-end
of the palindrome and further repetitive structures. Most
likely the innermost palindrome segment once built
the former end of the chromosome until it was buried
in further transposon-derived sequences and a further
rDNA palindrome end was added. Possibly this event
took place when the larger centromere was created that
is now in the same size range as the chromosome 1
centromere.

The chromosome 2 duplication occurred in the labora-
tory strain AX4 �30 years ago and comprises more than
700 kb. The duplication event may have led to major addi-
tional changes in the chromosome. One of these likely
changes is the presence of rDNA palindrome and DIRS
sequences at the distal border of the duplication. The
order of contigs in this part of the chromosome could
only be confirmed by linking HAPPY map markers, leav-
ing gaps between the contigs. The chromosome 2 centro-
mere organization is supported by the HAPPY markers

Table 1. Centromere composition: overview

Source Chromosome
length (Mb)

Length (bases) Percentage of
chromosome

Repetitive

Bases Contigous fragments Repetitive percentage

Chr1 4.92 173 921 3.5 150 503 136 86.5
Chr2 outer 8.88 361 820 4.1 310 016 316 85.7
Chr2 inner 36 067 0.4 34 578 26 95.9
Chr3 6.55 191 571 2.9 163 766 154 85.5
Alla 20.35 763 379 3.8 658 863 632 86.3

aAll refers to the summation of all centromere sequence.

Table 2. Centromere composition: detailed repeat composition

DIRS DDT Tdd Skipper

Bases cf (%) >4 kb Bases cf (%) Bases cf (%) Bases cf (%)

Chr1 80 920 30 (46.5) 8 38 294 35 (22.0) 1470 3 (0.9) 19 098 4 (11.0)
Chr2 outer 187 275 71 (51.8) 17 69 510 78 (19.2) 7404 5 (2.1) 21 397 15 (5.9)
Chr2 inner 15 254 4 (42.3) 2 6421 6 (17.8) 4640 2 (12.9) 4930 2 (13.7)
Chr3 89 365 39 (46.7) 7 33 966 32 (17.7) 8383 4 (4.4) 27 702 13 (14.5)
All 372 814 144 (48.8) 34 148 191 151 (19.4) 21 897 14 (2.9) 73 127 34 (9.6)

cf, contigous fragments. % refers to the percentage of the centromere region that consists of the given repeat.
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and the remaining 36 kb fragment does not fit at either
position in this centromere region, so it very likely resides
in this gap and extends the previously found DIRS
containing sequence (Figure 2B). However, the junction
between the rDNA palindrome sequence and the next
DIRS elements could not be found in the raw sequencing
reads nor are there bridging clones. Since the telomere
would be nonfunctional at this position in the chro-
mosome and, as previously explained, the centro-
meric sequence is likely nonfunctional, these junction
sequences might have been destroyed and are thus no
longer detectable. It is tempting to speculate that the
knockout of this nascent centromere was caused by an
overload of Tdd elements and/or the introduction of a
TRE element since both features set this contig apart
from the other centromeric regions. On the other hand,
one less Tdd integration event would have caused a

‘normal’ transposon number distribution in this short cen-
tromere sequence piece. There should be a potential for
TRE elements to integrate into centromeric regions since
tRNAs, the targets of this integration, can reside there.
Despite this fact, the only TRE element I found adjacent
to DIRS elements is not associated with a tRNA hinting
that this tRNA was deleted after the integration.
While Chromosome 2 is slightly larger than the other

chromosomes analyzed here, its centromeric region is pro-
portionally much larger, almost double the size of the
others. Concurrently this centromere carries a large
10 kb unique region at position 150–160 kb (Figure 1).
This is the largest unique region observed in all three
centromeres. While the whole centromeric region has an
A/T content of 68%, this region exhibits 78.5% A and T
nucleotides indicating a lack of any coding capacity. It is
possible that the chromosome 2 centromere is derived

Figure 1. Centromere structures. Symbols above each chromosome’s center line show features oriented towards the core of the chromosome, features
below the line are oriented towards the upper end of the chromosome. The DIRS elements are depicted as green half-arrows. DNA transposons are
in blue and skipper and DGLT elements in brown. The red triangles show the rDNA palindrome sequence whereas the orange hue indicates
nonunique sequences not derived from transposons. Black triangles above the figures indicate gap locations.

Figure 2. Schematic overview of the centromeric rearrangements in centromeres 2 (A) and 3 (B) Arrowheads indicate rDNA palindrome sequences.
The arrowhead direction gives the sequence direction from center to end of the rDNA palindrome. The rDNA palindrome sequence represented as
empty arrowhead is only supported by theoretical evidence. Light gray line: unique chromosome sequence. The diagonal streaked rectangles depict
the regions occupied by DIRS elements.
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from a duplicated centromere and the unique region
connects both. This could have been caused by increased
repair activities after the chromosome break and the
subsequent duplication event. This suggests duplicated
centromeres are tolerated, while the rDNA mark on chro-
mosome 3 suggests that short centromeres are not toler-
ated over longer evolutionary periods. The marks of
wound healing at centromeres detected in this strain indi-
cate that not only frequent duplication events (26) occur
in different strains but also centromere reorganization is
possible.

DIRS phylogeny and mode of centromere expansion

The availability of three centromeric regions makes it pos-
sible for the first time to analyze the mechanisms of
centromere plasticity in D. discoideum. DIRS elements

comprise the largest part of the centromeres and are
restricted to these regions. Therefore, they most likely
are the constitutive parts of this region. The other trans-
posable elements may be functionally dispensable.

To further understand DIRS’s role in centromeres and
possible modes of integration preferences, we performed a
phylogenetic analysis of these elements. On the three ana-
lyzed chromosomes 34 DIRS structures are located, which
are longer than 4 kb and therefore are nearly complete
elements. We assumed that these elements are the least
decayed and therefore represent (besides possible inser-
tions of truncated elements) the most recent DIRS ele-
ment insertions. Indeed, polymorphisms between these
34 elements are scarce, under 100 in the aligned sequence.
We reconstructed a phylogenetic tree of these elements
(Figure 3). Due to the rare polymorphisms, the tree is
only poorly resolved with weak bootstrap support for

Figure 3. Phylogenetic tree of complete DIRS elements on the different chromosomes. The location of the DIRS elements is indicated by color
(chromosome 1 green, chromosome 2 orange, chromosome 3 blue). The numbers after the chromosome indicator (C1; C2; C3) are given in ascending
order beginning from the telomeric end. Chromosome 2 origins are also indicated by o (outer centromere) and i (inner centromere like). Only
bootstrap values above 90% are shown. The scale is shown as a black bar.
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the main branches. Nevertheless, the relationship of the
outermost branching DIRS elements is well supported.
The tree shows clearly that there is no polymorphism
restricted to only one chromosome. Instead, closely
related DIRS elements are on different chromosomes
suggesting that integration of DIRS elements occurs in
trans and cis via retrotransposition.

To further investigate the dynamics of DIRS elements a
molecular clock model was tested and is rejected
(P< 0.0001). To examine closely related DIRS elements,
pairwise relative rate tests were performed on all four
pairs of DIRS elements where the terminal node had
over 90% bootstrap support. The pairs C2o 12/C2o 13
and C2o 9/C3 2 each have nonsignificant rate differences,
but the pairs C1 7/C3 6 (P< 0.04) and C2o 4/C1 4
(P< 0.0001) each have significant rate differences. While
it is difficult to generalize from these four pairs, it is pos-
sible to make two conclusions. First, trans-retrotransposi-
tion and existing on different chromosomes (C2o 9/C3 2)
does not necessarily lead to an increased rate of change as
compared with cis-retrotransposition and existing on the
same chromosome (C2o 12/C2o 13), since both pairs have
nonsignificant differences. Second, trans-retrotransposi-
tion and existing on different chromosomes (C1 7/C3 6
and C2o 4/C1 4) can lead to different rates of change. It
cannot be determined at this point whether DIRS ele-
ments established by cis-retrotransposition often have
different relative rates due to the small sample size. The
lack of a molecular clock and the relative rates tests
together indicate that DIRS elements can be subject to
variable mutational or selective forces after establishment
but not in every case.

Preferential cis integration would have explained, at
least partially, the observed clustering of DIRS elements
at specific chromosomal positions. Since there is no pref-
erence for such cis integration, other mechanisms should
be at work to establish specific integration. Without any
clues on the presence of a specific target sequence it is
tempting to speculate that regulation by small RNAs is
the major force, which restricts DIRS elements to centro-
meric regions.

A further possibility for centromere expansion would be
unequal crossing over via homologous recombination
during meiosis. This would create tandemly repeated
units not restricted to single transposon elements but
rather crossing integration and truncation borders. We
did not observe identical integration or truncation pat-
terns on different regions of the same or different centro-
meres demonstrating that, if such unequal crossovers take
place, they are rare. Furthermore, the traces of such events
would quickly be erased by subsequent transposon inte-
gration events.

Comparison to centromeres of other model organisms

Only for a few organisms full chromosomal centromeres
were described. Small defined sequence motifs as in
S. cerevisiae seem to be rare, in most organisms centro-
meres are large, highly repetitive regions. Most analyses
therefore yield only the major sequence motifs in addi-
tion to size estimates (27–30). A common feature of

all described centromere structures is its repetitiveness.
According to available data most centromeres consist
of short repeated units (alpha satellites) sometimes inter-
spersed with transposon species. Dictyostelium discoideum
centromeres share this repetitiveness, but we observed
no trace of alpha satellite sequences. Thus, while repeti-
tiveness in large centromeres seems to be indispensable,
small repeated sequences (alpha satellites) are not.

CONCLUSION

This analysis provides a first glimpse into the dynamics
of centromere formation in D. discoideum offering the pos-
sibility to study centromeres and their evolutionary
dynamics in this well-defined model system. A shotgun
survey sequencing of related species showed that the
transposon DIRS is present only in a few copies in other
genomes of social amoebas. We also found no other trans-
poson species, which could take over the role of DIRS
elements in these amoebas (our unpublished data). This
makes it unlikely that DIRS elements or other trans-
posons play a major role in centromere establishment in
other social amoebas. Possibly the large centromeres seen
in D. discoideum are an evolutionary late invention and
the ancestral state is a short centromere as in S. cerevisiae.
Ongoing comparative genome analysis within social
amoebas will help to further elucidate the dynamic evolu-
tion of centromeres.
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